In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.
Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games.
A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount of memory (it belongs to PSPACE) and every problem in PSPACE can be transformed in polynomial time into an equivalent instance of the given problem.
The PSPACE-complete problems are widely suspected to be outside the more famous complexity classes P (polynomial time) and NP (non-deterministic polynomial time), but that is not known. It is known that they lie outside of the class NC, a class of problems with highly efficient parallel algorithms, because problems in NC can be solved in an amount of space polynomial in the logarithm of the input size, and the class of problems solvable in such a small amount of space is strictly contained in PSPACE by the space hierarchy theorem.
The transformations that are usually considered in defining PSPACE-completeness are polynomial-time many-one reductions, transformations that take a single instance of a problem of one type into an equivalent single instance of a problem of a different type. However, it is also possible to define completeness using Turing reductions, in which one problem can be solved in a polynomial number of calls to a subroutine for the other problem.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Combinatorial game theory measures game complexity in several ways: State-space complexity (the number of legal game positions from the initial position), Game tree size (total number of possible games), Decision complexity (number of leaf nodes in the smallest decision tree for initial position), Game-tree complexity (number of leaf nodes in the smallest full-width decision tree for initial position), Computational complexity (asymptotic difficulty of a game as it grows arbitrarily large).
En théorie de la complexité, en informatique théorique, en logique mathématique, une formule booléenne quantifiée (ou formule QBF pour quantified binary formula en anglais) est une formule de la logique propositionnelle où les variables propositionnelles sont quantifiées. Par exemple, est une formule booléenne quantifiée et se lit « pour toute valeur booléenne x, il existe une valeur booléenne y et une valeur booléenne z telles que ((x ou z) et y) ».
En théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
It is well known that hyperedge-replacement grammars can generate NP-complete graph languages even under seemingly harsh restrictions. This means that the parsing problem is difficult even in the non-uniform setting, in which the grammar is considered to b ...
This thesis focuses on the development of robust control solutions for linear time-invariant interconnected systems affected by polytopic-type uncertainty. The main issues involved in the control of such systems, e.g. sensor and actuator placement, control ...
EPFL2016
Logic synthesis is a key component of digital design and modern EDA tools; it is thus an essential instrument for the design of leading-edge chips and to push the limits of their performance. In the last decades, the electronic circuits community has evolv ...