En cosmologie, la forêt Lyman-α désigne l'ensemble des structures observées dans les spectres des galaxies et quasars lointains, et qui sont dues à l'absorption par le milieu intergalactique d'une partie de la lumière émise par ces objets. Les photons absorbés sont ceux qui permettent une transition entre différents états excités de l'hydrogène neutre (non ionisé), partant de son état fondamental, ce qui correspond en spectroscopie à ce que l'on appelle la série de Lyman. En pratique, c'est surtout la transition vers le premier état excité qui est observée, ce qui correspond à la raie Lyman-α. Par ailleurs, les structures observées dans les spectres révèlent une abondance très élevée de ces raies d'absorption, correspondant à des absorbeurs répartis à différentes distances sur la ligne de visée, d'où le terme de « forêt ».
La profondeur d'une raie d'absorption dépend à la fois de la densité de la structure qui cause l'absorption et de sa taille. En pratique, seule une combinaison de ces deux quantités est effectivement observable par l'intermédiaire des raies d'absorption, la densité de colonne, dont l'unité est l'inverse d'une surface. Traditionnellement, on classifie les raies de la forêt Lyman-α en fonction de leur densité de colonne associée, notée N :
La forêt Lyman-α proprement dite, composée des systèmes à faible densité de colonne, N < 10 cm
Les systèmes Lyman limite, à densité de colonne intermédiaire, 10 cm < N < 10 cm
Les systèmes Lyman-α amortis, à forte densité de colonne, 10 cm < N
Le modèle standard de la cosmologie indique que lors de ses premiers instants, l'univers était dense et chaud, et que la matière ordinaire (appelée dans ce contexte matière baryonique) y était complètement ionisée. Par la suite, l'univers s'est refroidi du fait de son expansion, et quand sa température a atteint environ 3000 degrés, les électrons libres se sont liés pour la première fois aux noyaux atomiques.