The universal wavefunction (or wave function), introduced by Hugh Everett in his 1973 PhD thesis The Theory of the Universal Wave Function, informs a core concept in the relative state interpretation or many-worlds interpretation of quantum mechanics. It later received investigation from James Hartle and Stephen Hawking in which they derived a specific solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang cosmology. Everett's thesis introduction reads: Since the universal validity of the state function description is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the entire universe. In this sense this theory can be called the theory of the "universal wave function," since all of physics is presumed to follow from this function alone. The universal wave function is the wavefunction or quantum state of the totality of existence, regarded as the "basic physical entity" or "the fundamental entity, obeying at all times a deterministic wave equation." Ray Streater writes: The idea of the wave-function of the universe is meaningless; we do not even know what variables it is supposed to be a function of. [...] We find the laws of Nature by reproducible experiments. The theory needs a cut, between the observer and the system, and the details of the apparatus should not appear in the theory of the system. Hugh Everett's response: If we try to limit the applicability so as to exclude the measuring apparatus, or in general systems of macroscopic size, we are faced with the difficulty of sharply defining the region of validity. For what n might a group of n particles be construed as forming a measuring device so that the quantum description fails? And to draw the line at human or animal observers, i.e., to assume that all mechanical apparata obey the usual laws, but that they are not valid for living observers, does violence to the so-called principle of psycho-physical parallelism.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.