Résumé
La grammaire d'arbres adjoints, grammaire TAG, ou légèrement sensible au contexte, est un formalisme d'analyse grammaticale introduit par Aravind K. Joshi et ses collègues en 1975. Ce formalisme a été utilisé à différentes fins, et particulièrement en linguistique formelle et informatique pour le traitement de la syntaxe des langues naturelles. Historiquement, il a d'abord permis de représenter de manière directe des dépendances à longue distance et il permet également de représenter les dépendances croisées du suisse allemand et du flamand occidental, phénomène qui ne peut se traiter avec une grammaire de réécriture hors contexte, comme l'a montré S. Shieber. Finalement il permet de représenter aisément des grammaires dites fortement lexicalisées et appartient aux grammaires d'unifications. Mis à part son usage pour la description syntaxique, les grammaires d'arbres adjoints ont aussi été utilisées à des fins de description linguistique pour représenter des structures sémantiques, de dialogue ou des structures synchrones. On trouve aussi des usages du formalisme en BioNLP. Une Grammaire d'arbres adjoints (TAG) est un système de réécriture d'arbres composé : D'un ensemble de symboles non-terminaux, N. D'un ensemble de symboles terminaux, T, disjoint de N : T ∩ N = ∅. D'un élément distingué de N, appelé « Axiome » et noté S. D'un ensemble d'arbres initiaux (I) Un arbre initial est un arbre fini, muni d'un ordre linéaire, dont les nœuds feuille sont soit des symboles terminaux soit des symboles non terminaux, dans ce dernier cas ces nœuds sont appelés nœuds de substitution. D'un ensemble d'arbres auxiliaires (A) disjoint de I : A ∩ I = ∅. Les nœuds feuille d'un arbre auxiliaire sont étiquetés, soit par des symboles terminaux, soit par des symboles non terminaux. Un arbre auxiliaire comporte exactement un nœud feuille étiqueté par un symbole non terminal appelé « nœud pied ». Le nœud pied et la racine de l'arbre auxiliaire sont nécessairement de même catégorie. Tout autre nœud étiqueté par un non terminal est appelé « nœud de substitution ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.