Classical field theoryA classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature. A physical field can be thought of as the assignment of a physical quantity at each point of space and time.
Momentum operatorIn quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is Planck's reduced constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
Champ (physique)En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Loi scientifiquevignette|Ce diagramme de Venn tente de comparer et d'opposer les lois et les théories scientifiques. Une loi scientifique est un postulat basé sur des observations ou expériences répétées qui décrivent ou prédisent certains aspects de l'univers. Le terme "loi" est utilisé dans de nombreux cas (approximatif, précis, large ou étroit) dans tous les domaines des sciences naturelles (physique, chimie, astronomie, géosciences, biologie).
Action de ProcaEn physique, plus précisément en théorie des champs en physique des particules, l’action de Proca décrit un champ massif de spin-1 dans l'espace-temps de Minkowski. L'équation du mouvement associée est une équation d'onde relativiste appelée l'équation de Proca. L'action et l'équation de Proca sont nommés d'après le physicien franco-roumain Alexandru Proca. L'équation de Proca apparaît dans le modèle Standard dans lequel elle décrit les bosons de jauge massifs, c'est-à-dire les bosons Z et W.
Energy operatorIn quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry. It is given by: It acts on the wave function (the probability amplitude for different configurations of the system) The energy operator corresponds to the full energy of a system. The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system.
Energy–momentum relationIn physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Équation de MajoranaL'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.
Field equationIn theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space. Since the field equation is a partial differential equation, there are families of solutions which represent a variety of physical possibilities.