Publications associées (23)

Examining European Press Coverage of the Covid-19 No-Vax Movement: An NLP Framework

Daniel Gatica-Perez

This paper examines how the European press dealt with the no-vax reactions against the Covid-19 vaccine and the dis- and misinformation associated with this movement. Using a curated dataset of 1786 articles from 19 European newspapers on the anti-vaccine ...
ASSOC COMPUTING MACHINERY2023

Text Representation Learning for Low Cost Natural Language Understanding

Jan Frederik Jonas Florian Mai

Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
EPFL2023

Prompt–RSVQA: Prompting visual context to a language model for Remote Sensing Visual Question Answering

Devis Tuia, Sylvain Lobry, Christel Marie Tartini-Chappuis, Valérie Zermatten

Remote sensing visual question answering (RQA) was recently proposed with the aim of interfacing natural language and vision to ease the access of information contained in Earth Observation data for a wide audience, which is granted by simple questions in ...
2022

Learning computationally efficient static word and sentence representations

Prakhar Gupta

Most of the Natural Language Processing (NLP) algorithms involve use of distributed vector representations of linguistic units (primarily words and sentences) also known as embeddings in one way or another. These embeddings come in two flavours namely, sta ...
EPFL2021

Further results on latent discourse models and word embeddings

Youssef Allouah

We discuss some properties of generative models for word embeddings. Namely, (Arora et al., 2016) proposed a latent discourse model implying the concentration of the partition function of the word vectors. This concentration phenomenon led to an asymptotic ...
MICROTOME PUBL2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.