Publications associées (374)

Fast and Future: Towards Efficient Forecasting in Video Semantic Segmentation

Evann Pierre Guy Courdier

Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
EPFL2024

Modular segmentation, spatial analysis and visualization of volume electron microscopy datasets

Martin Weigert

Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and s ...
Berlin2024

Coronal jets identification using Deep Learning as Image and Video Object Detection

This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
2024

Land Cover Mapping From Multiple Complementary Experts Under Heavy Class Imbalance

Devis Tuia, Valérie Zermatten, Javiera Francisca Castillo Navarro, Xiaolong Lu

Deep learning has emerged as a promising avenue for automatic mapping, demonstrating high efficacy in land cover categorization through various semantic segmentation models. Nonetheless, the practical deployment of these models encounters important challen ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Data for Paper "Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning"

Anders Meibom, Devis Tuia, Guilhem Maurice Louis Banc-Prandi, Jonathan Paul Sauder

Example Data for DeepReefMap This dataset contains input videos in MP4 format taken with GoPro Hero 10 Cameras in Reefs in the Red Sea to demonstrate the DeepReefMap tool, which is described in the paper "Scalable Semantic 3D Mapping of Coral Reefs with De ...
EPFL Infoscience2024

Fast refacing of MR images with a generative neural network lowers re-identification risk and preserves volumetric consistency

Jean-Philippe Thiran, Tobias Kober, Bénédicte Marie Maréchal, Jonas Richiardi

With the rise of open data, identifiability of individuals based on 3D renderings obtained from routine structural magnetic resonance imaging (MRI) scans of the head has become a growing privacy concern. To protect subject privacy, several algorithms have ...
Wiley2024

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.