Ecological collapse An ecosystem is considered collapsed when its unique biotic (characteristic biota) or abiotic features are lost from all previous occurrences. Ecosystem collapse causes ecological collapse within a system; essentially altering its stability, resilience, and diversity levels. It is, however, possible to reverse through careful restoration, and is thus not completely equivalent to species extinction. It occurs after a system has reached a so-called ecological 'tipping point', or crossed a critical threshold, and can no longer adequately respond to rapid changes in ecological conditions; either due to the suddenness or the scale of the changes. It is important to note that—while certain types of accelerated ecosystem collapse or mass ecosystem collapse are typically viewed in a negative light—rapid environmental change and collapse have always been an integral part of the evolution and dynamics of the biosphere and marine ecosystems throughout geologic time. These processes historically contribute to ecosystem diversity by creating new types, or maintain and strengthen resilient systems while destroying non-resilient ones. While collapse events can occur naturally with disturbances to an ecosystem—through fires, landslides, flooding, severe weather events, disease, or species invasion—there has been a noticeable increase in human-caused disturbances over the past fifty years. The combination of environmental change and the presence of human activity is increasingly detrimental to ecosystems of all types, as our unrestricted actions often increase the risk of abrupt (and potentially irreversible) changes post-disturbance; when a system would otherwise have been able to recover. Some behaviors that induce transformation are: human intervention in the balance of local diversity (through introduction of new species or overexploitation), alterations in the chemical balance of environments through pollution, modifications of local climate or weather with anthropogenic climate change, and habitat destruction or fragmentation in terrestrial/marine systems.
Alexandre Buttler, Edward Mitchell, Vincent Eric Jules Jassey