Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Explore Apache Hive pour l'entreposage de données, les formats de données et la partition, avec des exercices pratiques dans la requête et la connexion à Hive.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Couvre l'intégration du stockage de données évolutives et de la carte réduisent le traitement à l'aide de Hadoop, y compris HDFS, Hive, Parquet, ORC, Spark et HBase.
Explore les modèles d'exécution de Hadoop, la tolérance aux défauts, la localisation des données et la programmation, soulignant les limites de MapReduce et d'autres cadres de traitement distribué.
Explore la localisation des données dans la planification des décisions pour les plates-formes multi-locataires et discute de l'architecture d'Hadoop, des optimisations du moteur d'exécution et des stratégies de tolérance aux pannes.