Publications associées (33)

Communication trade-offs for Local-SGD with large step size

Aymeric Daphnis Kévin Dieuleveut

Synchronous mini-batch SGD is state-of-the-art for large-scale distributed machine learning. However, in practice, its convergence is bottlenecked by slow communication rounds between worker nodes. A natural solution to reduce communication is to use the " ...
NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)2019

Optimized Distributed Hyperparameter Search and Simulation for Lung Texture Classification in CT Using Hadoop

Adrien Raphaël Depeursinge

Many medical image analysis tasks require complex learning strategies to reach a quality of image-based decision support that is sufficient in clinical practice. The analysis of medical texture in tomographic images, for example of lung tissue, is no excep ...
2016

Reliable and Real-Time Distributed Abstractions

David Kozhaya

The celebrated distributed computing approach for building systems and services using multiple machines continues to expand to new domains. Computation devices nowadays have additional sensing and communication capabilities, while becoming, at the same tim ...
EPFL2016

SigCO: Mining Significant Correlations via a Distributed Real-time Computation Engine

Karl Aberer, Jean Paul Calbimonte Perez, Tian Guo, Hao Zhuang

The dramatic rise of time-series data produced in a variety of contexts, such as stock markets, mobile sensing, sensor networks, data centre monitoring, etc., has fuelled the development of large-scale distributed real-time computation systems (e.g., Apach ...
2015

Fast Correlation Discovery for Large-Scale Streaming Time-Series Data

Karl Aberer, Saket Sathe, Tian Guo

The dramatic rise of streaming time-series data produced in a vari- ety of contexts, such as stock markets, mobile sensing, sensor net- works, data centre monitoring, etc., has fuelled the development of large-scale distributed real-time computation system ...
2014

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.