Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore les défis du Big Data, l'informatique distribuée avec Spark, les RDD, la configuration matérielle requise, MapReduce, les transformations et Spark DataFrames.
Explore les modèles d'exécution de Hadoop, la tolérance aux défauts, la localisation des données et la programmation, soulignant les limites de MapReduce et d'autres cadres de traitement distribué.
Présente le modèle de programmation MapReduce pour l'informatique distribuée, en mettant l'accent sur sa vision et ses mécanismes de sous-développement.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.