The advancement of face recognition technology has delivered substantial societal advantages. However, it has also raised global privacy concerns due to the ubiquitous collection and potential misuse of individuals' facial data. This presents a notable par ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
This article reports on the current state of the OBI DICT project, a bilingual e-dictionary of oracle-bone inscriptions (OBI), incorporating artificial intelligence (AI) image recognition technology. It first provides a brief overview of the development of ...
We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a mo ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.
Simultaneously, a critical pain point arises as several computer vision applications are deploye ...
Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and ...
In the past years, deep convolutional neural networks have been pushing the frontier of face recognition (FR) techniques in both verification and identification scenarios. Despite the high accuracy, they are often criticized for lacking explainability. The ...
As an 'early alerting' sense, one of the primary tasks for the human visual system is to recognize distant objects. In the specific context of facial identification, this ecologically important task has received surprisingly little attention. Most studies ...
Despite the significant progress in recent years, deep face recognition is often treated as a "black box" and has been criticized for lacking explainability. It becomes increasingly important to understand the characteristics and decisions of deep face rec ...
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. O ...