Real-world samples of graphene often exhibit various types of out-of-plane disorder-ripples, wrinkles and folds-introduced at the stage of growth and transfer processes. These complex out-of-plane defects resulting from the interplay between self-adhesion ...
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
Molecular hydrogen adsorbed on graphene was investigated by analyzing rotational excitation spectra obtained with a gate-tunable scanning tunneling microscope (STM). Through the shift of the rotational excitation energy, the tunability of physisorbed H2 on ...
In this Letter we address the reentrance of magic-angle phenomena (band flatness and quantum-geometric transport) in twisted bilayer graphene (TBG) subjected to strong magnetic fluxes +/-(1)0, +/- 200, +/- 3(p0 ... ((D0 = h/e is the flux quantum per moire ...
The discovery of twisted bilayer graphene with tunable superconductivity has diverted great focus at the world of twisted van der Waals heterostructures. Here we propose a paradigm for bilayer materials, where covalent bonding replaces the van der Waals in ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
Recent advances on low-dimensional and topological materials has greatly inspired the research in condensed matter physics. This thesis is devoted to the computational and theoretical study of topological effects in two-dimensional materials, especially na ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Moiré superlattices have recently been extensively studied in both electronic and photonic systems, e.g., magic-angle bilayer graphene showing superconductivity and twisted bilayer photonic crystals leading to magic-angle lasers. However, the moiré physics ...
Experimental control of local spin-charge interconversion is of primary interest for spintronics. Van der Waals (vdW) heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. ...