Machine à compteursUne machine à compteurs est un modèle de calcul très rudimentaire. Les machines à compteurs sont parfois appelées machines à registres ou machines de Minsky. Dans sa version la plus simple une machine à compteurs est composée de deux compteurs (ou registres) et d'un programme. Chaque compteur est un entier naturel (non borné).
Machine à registres illimitésEn informatique, une machine à registres illimités ou URM (de l'anglais : Unlimited Register Machine) est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tout comme les machines de Turing et le lambda-calcul. Une URM est Turing-complète. Les registres de la machine sont représentés par : et peuvent contenir des éléments de . Un programme pour cette machine est représenté par toute suite de la forme : qui contient une suite finie d'instructions.
Random access machineEn informatique théorique, la machine RAM, pour Random Access Machine, est un modèle abstrait d'ordinateur destiné à étudier des algorithmes. une machine qui ne fait qu'effectuer des calculs sur des nombres, codés sous la forme d'une suite de symboles. Ces calculs vont donc transformer une suite de symboles en une autre. Les suites de symboles manipulées sont appelées des données, tandis que les calculs qui transforment une chaîne de « caractères » en une autre sont appelées des instructions.
Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.
Machine de TuringEn informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ». Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité.