Personnes associées (32)
Freddy Radtke
Freddy Radtke obtained his Ph.D. in Molecular Biology from the University of Zürich in 1994. In 1995, he started his postdoctoral research in the laboratory of Michel Aguet at Genentech, Inc. (San Francisco, USA). In 1997, he returned to Switzerland with Michel Aguet and finished his postdoctoral fellowship at the Swiss Institute for Experimental Cancer Research (ISREC) in Lausanne. From 1999‑2005, he was a group leader and Associate Member at the Ludwig Institute for Cancer Research. Freddy Radtke then joined ISREC in January 2006 as a senior scientist and in July 2006, he was appointed Associate Professor at the EPFL School of Life Sciences
Anders Meibom
Anders Meibom obtained his PhD in physics from the University of Southern Denmark in 1997. This was followed by two and a half years of PostDoc work at the Hawaii Institute for Geophysics and Planetology, where he conducted mineralogical studies of primitive chondritic meteorites.  From 2000 to 2005, he was Research Associate in the Geological & Environmental Sciences, Stanford University, where he represented Stanford in the USGS-Stanford ion microprobe laboratory.   In 2005, he became proifessor at the Muséum National d’Histoire Naturelle in Paris. From 2006 to 2011 he was the director of the French national NanoSIMS laboratory.   Since January 2012, he is professor at the EPFL in the School of Architecture, Civil and Environmental Engineering (ENAC).  From April 2014, he is professor ad personam at the Institute of Earth Sciences, University of Lausanne.
Vassily Hatzimanikatis
Dr. Vassily Hatzimanikatis is currently Associate Professor of Chemical Engineering and Bioengineering at Ecole Polytechnique Federale de Lausanne (EPFL), in Lausanne, Switzerland. Vassily received a PhD and an MS in Chemical Engineering from the California Institute of Technology, and his Diploma in Chemical Engineering from the University of Patras, in Greece. After the completion of his doctoral studies, he held a research group leader position at the Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland. Prior to joining EPFL, Vassily worked for three years in DuPont, Cargill, and Cargill Dow, and he has been assistant professor at Northwestern University, at Illinois, USA. Vassily’s research interests are in the areas of computational systems biology, biotechnology, and complexity. He is associate editor of the journals Biotechnology & Bioengineering, Metabolic Engineering and Integrative Biology, and he serves on the editorial advisory board of the journals Bioprocess and Biosystems Engineering, Journal of Chemical Technology and Biotechnology, and Industrial Biotechnology. He has written over 70 technical publications and he is co-inventor in three patents and patent applications. Vassily is a fellow of the American Institute for Medical and Biological Engineering (2010), he was a DuPont Young Professor (2001-2004), and he has also received the Jay Bailey Young Investigator Award in Metabolic Engineering (2000), and the ACS Elmar Gaden Award (2011).
Henry Markram
Henry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80’s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps. He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band. He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx – an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction. He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the “tabula rasa principle” which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing. In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markram’s lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring. At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the “blue-print” of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBM’s most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10’000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markram’s lab has now set the agenda towards whole brain and molecular modeling. With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the “Intense World Syndrome” proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism. Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Florian Maria Wurm
Florian Wurm received his academic training as a Biologist and Molecular Geneticist at the University of Giessen. He joined the Hoechst AG (Behringwerke) in Marburg as head of a laboratory in Virology. Working with immortalized mammalian cells for the establishment of production processes for alpha-interferons provided the first opportunity to combine basic research with medical application. In 1984 he joined Harvard Medical School in Boston as a Research Fellow in Molecular Biology. 1986 he took an offer from Genentech Inc. in San Francisco to work in Process Sciences on the development of large scale manufacturing processes for recombinant proteins. There he has held a number of leading positions and has acquired intimate knowledge in the generation of protein pharmaceuticals in mammalian cells in bioreactors (a number of which are now marketed products).  In 1995 he joined the EPFL as a Professor for Biotechnology. Wurm has published more than 250 scientific papers and holds more than 20 patents/patent-applications. His H-index stands at 60 in 2021.  He was Chairman (2005-2009) and is member of the Executive Board of the European Society of Animal Cell Technology (ESACT). He serves as a consultant to the pharmaceutical Biotech Industry, mainly in the fields of animal cell technology for recombinant protein production and in regulatory affairs. He works as a scientific reviewer and editior/asscciate editor for a number of international journals in the Biotech field. F.M. Wurm teaches classes to pre- and postgraduate students in the fields of Molecular and Cellular Biotechnology. He was founder and Chief Scientific Officer of ExcellGene SA, a 2001 established company in Monthey, Switzerland. He took the position of President and CEO of ExcellGene in 2015. He retired from the CEO position in 2017 and continues to be President and Chief Scientific Officer of ExcellGene. In 2008 Dr. Wurm was appointed Visiting Professor for Biotechnology at Jinan University in Guangzhou, China.   He retired from his position at the EPFL in 2015. His laboratory is closed. With his team at ExcellGene and in collaboration with Dr. Paco Pino, Director of R&D, he continues to explore manufacturing sciences with animal cells in bioreactors.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.