The TISO-10-kW solar plant, connected to the grid in 1982, is the oldest installation of this kind in Europe. Its history is well documented, and the full set of modules has been tested indoors at regular intervals over the years. After 35 years of operati ...
In densely populated countries, little free land is available for the deployment of photovoltaics (PV) in field installations. In addition, 40% of the world's demand for electricity is related to buildings. These facts provide a strong argument for the acc ...
This thesis is in the context of representation theory of finite groups. More specifically, it studies biset functors. In this thesis, I focus on two biset functors: the Burnside functor and the functor of p-permutation modules. For the Burnside functor we ...
Let G be a finite group with a Sylow 2-subgroup P which is either quaternion or semi-dihedral. Let k be an algebraically closed field of characteristic 2. We prove the existence of exotic endotrivial kG-modules, whose restrictions to P are isomorphic to th ...
The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...
Anthropogenic chemical contaminants are found routinely in our water resources. Although most of these compounds are usually present at low concentrations, they are of concern due to their ecotoxicity, antibacterial resistance and potential harm to human h ...
In this paper, we use projectivity relative to kG-modules to define groups of relatively endotrivial modules, which are obtained by replacing the notion of projectivity with that of relative projectivity in the definition of ordinary endotrivial modules. T ...
Let A be a commutative noetherian ring of Krull dimension 3. We give a necessary and sufficient condition for A-projective modules of rank 2 to be free. Using this, we show that all the finitely generated projective modules over the algebraic real 3-sphere ...
Let A be a noetherian commutative Z[1/2]-algebra of Krull dimension d and let P be a projective A-module of rank d. We use derived Grothendieck-Witt groups and Euler classes to detect some obstructions for P to split off a free factor of rank one. If d