Classical cable theory uses mathematical models to calculate the electric current (and accompanying voltage) along passive neurites, particularly the dendrites that receive synaptic inputs at different sites and times. Estimates are made by modeling dendrites and axons as cylinders composed of segments with capacitances and resistances combined in parallel (see Fig. 1). The capacitance of a neuronal fiber comes about because electrostatic forces are acting through the very thin lipid bilayer (see Figure 2). The resistance in series along the fiber is due to the axoplasm's significant resistance to movement of electric charge. Cable theory in computational neuroscience has roots leading back to the 1850s, when Professor William Thomson (later known as Lord Kelvin) began developing mathematical models of signal decay in submarine (underwater) telegraphic cables. The models resembled the partial differential equations used by Fourier to describe heat conduction in a wire. The 1870s saw the first attempts by Hermann to model neuronal electrotonic potentials also by focusing on analogies with heat conduction. However, it was Hoorweg who first discovered the analogies with Kelvin's undersea cables in 1898 and then Hermann and Cremer who independently developed the cable theory for neuronal fibers in the early 20th century. Further mathematical theories of nerve fiber conduction based on cable theory were developed by Cole and Hodgkin (1920s–1930s), Offner et al. (1940), and Rushton (1951). Experimental evidence for the importance of cable theory in modelling the behavior of axons began surfacing in the 1930s from work done by Cole, Curtis, Hodgkin, Sir Bernard Katz, Rushton, Tasaki and others. Two key papers from this era are those of Davis and Lorente de Nó (1947) and Hodgkin and Rushton (1946). The 1950s saw improvements in techniques for measuring the electric activity of individual neurons. Thus cable theory became important for analyzing data collected from intracellular microelectrode recordings and for analyzing the electrical properties of neuronal dendrites.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
NX-450: Computational neurosciences: biophysics
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
BIOENG-450: In silico neuroscience
"In silico Neuroscience" introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies.
Séances de cours associées (23)
Potentiel d'équilibre membranaire: formulation et modèles
Explore le potentiel d'équilibre membranaire, les modèles de circuits, la réponse graduée et l'organisation du système nerveux.
Analogies électroacoustiques
Couvre les analogies électroacoustiques, la représentation des systèmes acoustiques et les principes de perte acoustique.
Compréhension biophysique du comportement neuronal
Explore la compréhension biophysique du comportement neuronal, en se concentrant sur les potentiels d'action, les défis de modélisation neuronale et l'inhibition dendritique.
Afficher plus
Publications associées (33)
Concepts associés (5)
Modèles du neurone biologique
vignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Potentiel d'action
vignette|Le déplacement d'un potentiel d'action le long d'un axone, modifie la polarité de la membrane cellulaire. Les canaux ioniques sodium Na+ et potassium K+ voltage-dépendants s'ouvrent puis se ferment quand la membrane atteint le potentiel seuil, en réponse à un signal en provenance d'un autre neurone. À l'initiation du potentiel d'action, le canal Na+ s'ouvre et le Na+ extracellulaire rentre dans l'axone, provoquant une dépolarisation. Ensuite la repolarisation se produit lorsque le canal K+ s'ouvre et le K+ intracellulaire sort de l'axone.
Synapse
thumb|400px|Synapse entre deux neurones. La synapse (du grec , « contact, point de jonction », dérivé de , « joindre, connecter ») est une zone de contact fonctionnelle qui s'établit entre deux neurones, ou entre un neurone et une autre cellule (cellules musculaires, récepteurs sensoriels...). Elle assure la conversion d'un potentiel d'action déclenché dans le neurone présynaptique en un signal dans la cellule postsynaptique. On estime, pour certains types cellulaires (par exemple cellule pyramidale, cellule de Purkinje.
Afficher plus
MOOCs associés (6)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.