The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined. The reason for this subtlety is that the energy and momentum in the gravitational field cannot be unambiguously localized. (See Chapter 20 of .) So, rigorous definitions of the mass in general relativity are not local, as in classical mechanics or special relativity, but make reference to the asymptotic nature of the spacetime. A well defined notion of the mass exists for asymptotically flat spacetimes and for asymptotically Anti-de Sitter space. However, these definitions must be used with care in other settings. In special relativity, the rest mass of a particle can be defined unambiguously in terms of its energy and momentum as described in the article on mass in special relativity. Generalizing the notion of the energy and momentum to general relativity, however, is subtle. The main reason for this is that that gravitational field itself contributes to the energy and momentum. However, the "gravitational field energy" is not a part of the energy–momentum tensor; instead, what might be identified as the contribution of the gravitational field to a total energy is part of the Einstein tensor on the other side of Einstein's equation (and, as such, a consequence of these equations' non-linearity). While in certain situations it is possible to rewrite the equations so that part of the "gravitational energy" now stands alongside the other source terms in the form of the stress–energy–momentum pseudotensor, this separation is not true for all observers, and there is no general definition for obtaining it.
Jean-Paul Richard Kneib, David Richard Harvey, Mathilde Jauzac, Richard Massey, Johan Richard
Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Mingkui Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Thomas Berger, Alessandro Caratelli, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Sourav Sen, Viktor Khristenko, Marco Trovato, Fan Xia, Xiao Wang, Bibhuprasad Mahakud, Jing Li, Rajat Gupta, Lei Feng, Muhammad Waqas, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Benjamin William Allen, Pratyush Das, Miao Hu, Lei Li, Amr Mohamed, Valérie Scheurer