Laws of Form (hereinafter LoF) is a book by G. Spencer-Brown, published in 1969, that straddles the boundary between mathematics and philosophy. LoF describes three distinct logical systems:
The "primary arithmetic" (described in Chapter 4 of LoF), whose models include Boolean arithmetic;
The "primary algebra" (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus;
"Equations of the second degree" (Chapter 11), whose interpretations include finite automata and Alonzo Church's Restricted Recursive Arithmetic (RRA).
"Boundary algebra" is Meguire's (2011) term for the union of the primary algebra and the primary arithmetic. Laws of Form sometimes loosely refers to the "primary algebra" as well as to LoF.
The preface states that the work was first explored in 1959, and Spencer Brown cites Bertrand Russell as being supportive of his endeavour. He also thanks J. C. P. Miller of University College London for helping with the proof reading and offering other guidance. In 1963 Spencer Brown was invited by Harry Frost, staff lecturer in the physical sciences at the department of Extra-Mural Studies of the University of London to deliver a course on the mathematics of logic.
LoF emerged from work in electronic engineering its author did around 1960, and from subsequent lectures on mathematical logic he gave under the auspices of the University of London's extension program. LoF has appeared in several editions. The second series of editions appeared in 1972 with the "Preface to the First American Edition" which emphasised the use of self-referential paradoxes. the most recent being a 1997 German translation, and has never gone out of print.
LoFs mystical and declamatory prose and its love of paradox make it a challenging read for all. Spencer-Brown was influenced by Wittgenstein and R. D. Laing. LoF also echoes a number of themes from the writings of Charles Sanders Peirce, Bertrand Russell, and Alfred North Whitehead.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
An entitative graph is an element of the diagrammatic syntax for logic that Charles Sanders Peirce developed under the name of qualitative logic beginning in the 1880s, taking the coverage of the formalism only as far as the propositional or sentential aspects of logic are concerned. See 3.468, 4.434, and 4.564 in Peirce's Collected Papers. Peirce wrote of this system in an 1897 Monist article titled "The Logic of Relatives", although he had mentioned logical graphs in an 1882 letter to O. H. Mitchell.
En logique mathématique, la logique algébrique est le raisonnement obtenu en manipulant des équations avec des variables libres. Ce qui est maintenant généralement appelé la logique algébrique classique se concentre sur l'identification et la description algébrique des modèles adaptés à l'étude de différentes logiques (sous la forme de classes d'algèbres qui constituent la sémantique algébrique de ces systèmes déductifs) et aux problèmes connexes, comme la représentation et la dualité.
The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effec ...