CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
CS-430: Intelligent agentsSoftware agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by prog
EE-568: Reinforcement learningThis course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
ME-390: Foundations of artificial intelligenceThis course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
CIVIL-459: Deep learning for autonomous vehiclesDeep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
DH-405: Foundations of digital humanitiesThis course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir