L’histoire des fonctions trigonométriques semble avoir débuté il y a environ ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent. Une tablette babylonienne écrite en cunéiforme, nommée Plimpton 322 (environ 1900 av. J.-C.) montre quinze triplets pythagoriciens et une colonne de nombres, qui peut être interprétée comme une table de sécantes. Il y a cependant de nombreux débats à ce sujet pour savoir s'il s'agit bien d'une table trigonométrique. L'utilisation la plus ancienne du sinus apparaît dans les Shulba Sutras écrits en indien ancien entre le et le , dans lesquels la valeur du sinus de π/4 radians (45°) est correctement calculée comme égale à 1/√2 avec une procédure pour cercler un carré (l'inverse de quarrer un cercle), bien que les indiens n'eussent pas encore développé la notion de sinus dans un sens général. Les rapports trigonométriques furent étudiés indépendamment par Hipparque de Nicée (-180/-125) dans un ouvrage « De l'étude des droites dans le cercle ». Hipparque est reconnu comme le premier mathématicien à avoir disposé de « tables trigonométriques » (tables des longueurs d'arcs de cercle et des longueurs des cordes sous-tendues, qui sont en fait des sinus de l'angle moitié) ; elles lui servirent à calculer l'excentricité des orbites lunaire et solaire, et à estimer les grandeurs et distances relatives du Soleil et de la lune. Toutefois, il n'est pas possible d'affirmer à coup sûr qu'il en soit l'initiateur, bien que Ptolémée (deux siècles plus tard) soit de cet avis : si les historiens des mathématiques s'accordent en général pour désigner Hipparque comme le premier compilateur de tables de cordes, les uns vont jusqu'à en faire l'inventeur de la trigonométrie, alors que d'autres considèrent qu'il s'est borné, en la matière, à présenter de manière pratique des connaissances déjà acquises de longue date.