In the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra. (There are other notions of compactness in mathematics.)
In a partially ordered set (P,≤) an element c is called compact (or finite) if it satisfies one of the following equivalent conditions:
For every directed subset D of P, if D has a supremum sup D and c ≤ sup D then c ≤ d for some element d of D.
For every ideal I of P, if I has a supremum sup I and c ≤ sup I then c is an element of I.
If the poset P additionally is a join-semilattice (i.e., if it has binary suprema) then these conditions are equivalent to the following statement:
For every subset S of P, if S has a supremum sup S and c ≤ sup S, then c ≤ sup T for some finite subset T of S.
In particular, if c = sup S, then c is the supremum of a finite subset of S.
These equivalences are easily verified from the definitions of the concepts involved. For the case of a join-semilattice, any set can be turned into a directed set with the same supremum by closing under finite (non-empty) suprema.
When considering directed complete partial orders or complete lattices the additional requirements that the specified suprema exist can of course be dropped. A join-semilattice that is directed complete is almost a complete lattice (possibly lacking a least element)—see completeness (order theory) for details.
The most basic example is obtained by considering the power set of some set A, ordered by subset inclusion. Within this complete lattice, the compact elements are exactly the finite subsets of A. This justifies the name "finite element".
The term "compact" is inspired by the definition of (topologically) compact subsets of a topological space T.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets {| border="0" |- | | (cl is extensive), |- | | (cl is increasing), |- | | (cl is idempotent). |} Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families".
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "") and infima (greatest lower bounds, meets, "") to the theory of partial orders.
This work is dedicated to developing algebraic methods for channel coding. Its goal is to show that in different contexts, namely single-antenna Rayleigh fading channels, coherent and non-coherent MIMO channels, algebraic techniques can provide useful tool ...
This master project on algebraic coding theory gathers various techniques from lattice theory, central simple algebras and algebraic number theory. The thesis begins with the formulation of the engineering problem into mathematical form. It presents how sp ...