Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Compression efficiency is mainly driven by redundancy of the overcomplete set of functions chosen for the signal decomposition. In Matching Pursuit algorithms for example, the redundancy of the dictionary influences the convergence of the residual energy. ...
The dictionary approach to signal and image processing has been massively investigated in the last two decades, proving very attractive for a wide range of applications. The effectiveness of dictionary-based methods, however, is strongly influenced by the ...
This paper presents a new image representation method based on anisotropic refinement. It has been shown that wavelets are not optimal to code 2-D objects which need true 2-D dictionaries for efficient approximation. We propose to use rotations and anisotr ...
This report studies the effect of introducing a priori knowledge to recover sparse representations when overcomplete dictionaries are used. We focus mainly on Greedy algorithms and Basis Pursuit as for our algorithmic basement, while a priori is incorporat ...
Approximating a signal or an image with a sparse linear expansion from an overcomplete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is ...