4 21 polytopeDISPLAYTITLE:4 21 polytope In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure. Its Coxeter symbol is 421, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 4-node sequences, . The rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the triangle face centers of the 421.
8-cubeIn geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol {4,36}, being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the 4-cube) and oct for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets.
Uniform polytopeIn geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.
Gosset–Elte figuresIn geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches.
Uniform 10-polytopeIn ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge. A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets. Regular 10-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w,x}, with x {p,q,r,s,t,u,v,w} 9-polytope facets around each peak.
Uniform 9-polytopeIn nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets. A uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope facets. Regular 9-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w}, with w {p,q,r,s,t,u,v} 8-polytope facets around each peak.
Uniform 7-polytopeIn seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes are represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} 6-polytopes facets around each 4-face. There are exactly three such convex regular 7-polytopes: {3,3,3,3,3,3} - 7-simplex {4,3,3,3,3,3} - 7-cube {3,3,3,3,3,4} - 7-orthoplex There are no nonconvex regular 7-polytopes.
Hyperoctaèdrethumb|Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4. Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube. Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, ..., 0). En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}.