Un σ-anneau (lire sigma-anneau) est un système d'ensembles dont la définition est un peu plus générale que celle des σ-algèbres (ou « tribus »). Il est possible de présenter dans ce formalisme alternatif la théorie de la mesure, aujourd'hui plus souvent exposée dans le cadre des tribus. Toute σ-algèbre (on dit aussi « tribu ») est un σ-anneau. De même que les algèbres d'ensembles sont les anneaux d'ensembles contenant , les σ-algèbres sont les σ-anneaux contenant . Un anneau d'ensembles sur un ensemble fini est aussi un σ-anneau. Un anneau sur un ensemble fini qui n'est pas une algèbre d'ensembles fournit donc un exemple de σ-anneau qui n'est pas une σ-algèbre : c'est ainsi le cas de sur un ensemble à deux éléments . Sur tout ensemble , le système de parties fini ou dénombrable est un σ-anneau. Il engendre comme σ-algèbre le système de parties ou fini ou dénombrable Lorsque est infini non dénombrable, la première classe est strictement contenue dans la seconde, et fournit un deuxième exemple de σ-anneau qui n'est pas une σ-algèbre. Vues comme anneaux de Boole, les algèbres d'ensembles ont une unité, au sens d'un élément neutre pour la deuxième opération de cette structure (à savoir l'intersection). Les anneaux d'ensembles plus généraux (et en particulier les σ-anneaux) peuvent en avoir une, comme dans l'exemple de ci-dessus, ou ne pas en avoir, comme dans l'exemple suivant. Il est facile de voir qu'un anneau d'ensembles a une unité si et seulement si :Les σ-anneaux sur ayant une unité sont en fait les σ-algèbres sur . Tout σ-anneau est un δ-anneau, mais la réciproque n'est pas vraie (voir les détails à l'article « δ-anneau »). En 1915, Maurice Fréchet publie un article qui propose déjà une définition des mesures très voisine de celle admise de nos jours, et qui est le premier à considérer des « ensembles abstraits » sans relation avec les nombres réels. Il y introduit, sans les nommer, les σ-anneaux. Jusqu'au deuxième tiers du , le cadre des σ-anneaux est souvent utilisé en lieu et place de celui des tribus pour exposer la théorie de la mesure.