En physique, le vide quantique décrit l'état du vide selon les principes de la mécanique quantique. Alors que l'on croyait l'univers rempli d'éther, la physique du a abandonné cette notion pour un espace littéralement vide de matière. Les principes quantiques montrent que ce vide est en réalité rempli d'énergie qui engendre de nombreux effets : on parle alors d'énergie du vide. Dans la théorie de l'électrodynamique quantique, les particules élémentaires échangent des photons virtuels pour interagir. Ces particules virtuelles utilisent l'énergie du vide pour apparaître, agir puis disparaître, dans les limites du principe d'incertitude. Les inégalités d'Heisenberg, connues sous le nom de principe d'incertitude, sont une conséquence directe de la dualité onde-corpuscule. L'une d'elles, controversée, permet d'écrire : , où est la constante de Planck réduite. Cette inéquation signifie que le produit de la variation de l'énergie par une certaine durée (variation de temps) est obligatoirement supérieure à une valeur non nulle. Ce qui veut dire qu'il est possible d' pendant un temps très court. C'est ce mécanisme qui est à l'origine des fluctuations du vide. L'équation la plus célèbre de la physique traduit l'équivalence entre masse et énergie. Donc en empruntant de l'énergie au vide il est possible de créer des particules massiques. Ce mécanisme est à l'origine de l'apparition de paires de particules virtuelles. Ainsi en mécanique quantique le vide est rempli de particules virtuelles apparaissant pendant un temps très bref avant de disparaître. Ces particules virtuelles apparaissent en théorie quantique des champs : leurs effets impliquent des corrections sur les calculs, dans les théories dites renormalisables. Ces calculs relativement compliqués sont régis par les règles des diagrammes de Feynman. des travaux de Pierre Cartier et Alain Connes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-416: Particle physics II
This course aims to make students familiar and comfortable with the main concepts of particle physics, providing a clear connection between the theory and relevant experimental results, including the
Publications associées (83)
Concepts associés (24)
Boson de Higgs
thumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Théorie de jauge
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Effet Casimir
vignette|Forces de Casimir sur des plaques parallèles. vignette|Forces de Casimir sur des plaques parallèles. L’effet Casimir, tel que prédit par le physicien néerlandais Hendrik Casimir en 1948, est une force attractive entre deux plaques parallèles conductrices et non chargées. Cet effet, dû aux fluctuations quantiques du vide, existe également pour d'autres géométries d'électrodes. Expérimentalement, on utilise souvent des miroirs. Les fluctuations quantiques du vide sont présentes dans toute théorie quantique des champs.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.