Concept

Poincaré residue

In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions. Given a hypersurface defined by a degree polynomial and a rational -form on with a pole of order on , then we can construct a cohomology class . If we recover the classical residue construction. When Poincaré first introduced residues he was studying period integrals of the form for where was a rational differential form with poles along a divisor . He was able to make the reduction of this integral to an integral of the form for where , sending to the boundary of a solid -tube around on the smooth locus of the divisor. Ifon an affine chart where is irreducible of degree and (so there is no poles on the line at infinity page 150). Then, he gave a formula for computing this residue aswhich are both cohomologous forms. Given the setup in the introduction, let be the space of meromorphic -forms on which have poles of order up to . Notice that the standard differential sends Define as the rational de-Rham cohomology groups. They form a filtrationcorresponding to the Hodge filtration. Consider an -cycle . We take a tube around (which is locally isomorphic to ) that lies within the complement of . Since this is an -cycle, we can integrate a rational -form and get a number. If we write this as then we get a linear transformation on the homology classes. Homology/cohomology duality implies that this is a cohomology class which we call the residue. Notice if we restrict to the case , this is just the standard residue from complex analysis (although we extend our meromorphic -form to all of . This definition can be summarized as the map There is a simple recursive method for computing the residues which reduces to the classical case of . Recall that the residue of a -form If we consider a chart containing where it is the vanishing locus of , we can write a meromorphic -form with pole on as Then we can write it out as This shows that the two cohomology classes are equal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.