vignette|Tête et pattes avant d'un Gecko (espèce non précisée, queue en forme de feuille)
En physique et en chimie, une force de van der Waals, interaction de van der Waals ou liaison de van der Waals est un potentiel interatomique dû à une interaction électrique de faible intensité entre deux atomes ou molécules, ou entre une molécule et un cristal. Elle représente la moyenne statistique de toutes les configurations possibles pour l'interaction, pondérées par leur probabilité à l'équilibre thermodynamique. Cette moyenne conduit à une force attractive. Ces forces ont été nommées en l'honneur du physicien néerlandais Johannes Diderik van der Waals (1837 - 1923), prix Nobel de physique 1910, qui fut le premier à introduire leurs effets dans les équations d'état des gaz en 1873 (voir Équation d'état de van der Waals).
Les forces de van der Waals sont dues à l'interaction entre dipôles, qu'il s'agisse des dipôles permanents des molécules ou des dipôles induits par l'interaction. La distance importante entre molécules autorise un calcul de perturbations sous forme d'un développement multipolaire dont on ne retient que les premiers termes qui sont alors statistiquement moyennés. On obtient :
l'interaction électrostatique entre deux multipôles permanents. On les appelle les forces de Keesom ;
l'interaction entre un multipôle permanent et un multipôle induit (effets d'induction). On les appelle les forces de Debye ;
l'interaction électrostatique entre deux multipôles induits (effets de dispersion). On les appelle les forces de London.
L'énergie potentielle des forces de van der Waals peut donc se formuler de la façon suivante :
Les trois termes de cette expression peuvent être décomposés de la manière suivante :
Cette énergie est liée aux forces de Keesom, dues à l'interaction entre deux molécules polaires.
L’interaction dipôle-dipôle est beaucoup plus faible qu’une interaction ion-dipôle puisque l'interaction se produit entre charges partielles. L’énergie potentielle typique de ce type d’interaction est de l’ordre de 2 kJ/mol.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En chimie, la polarité est la façon dont les charges électriques négatives et positives sont réparties dans une molécule ou une liaison chimique. La polarité est due à la différence d'électronégativité entre les atomes qui la composent, aux différences de charge qu'elle induit, et à leur répartition dans l'espace. La molécule ou la liaison est ainsi considérée comme un dipôle électrostatique : plus les charges sont réparties de façon asymétrique, plus elle est polaire, et inversement.
Une interaction non covalente diffère d'une liaison covalente en ce qu'elle n'implique pas le partage d'électrons, mais implique plutôt des variations plus dispersées des interactions électromagnétiques entre molécules ou au sein d'une molécule. L' énergie chimique libérée lors de la formation d'interactions non covalentes est généralement de l'ordre de 1 à 5 kcal / mol ( à pour 6,02 × 1023 molécules). Les interactions non covalentes peuvent être classées en différentes catégories, telles que les effets électrostatiques, les effets π, les forces de van der Waals et les effets hydrophobes.
Les forces intermoléculaires sont des forces de nature essentiellement électrostatique induisant une attraction ou une répulsion entre des particules chimiques (atomes, molécules ou ions). Ces forces sont en général bien plus faibles que les forces intramoléculaires qui assurent l'association des atomes dans les molécules.
The course treats the main surface analysis methods for the characterization of surfaces, interfaces and thin films. It discusses how these methods can be applied to gain specific knowledge about stru
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
The course covers the production of ceramics and colloids from the basic scientific concepts and theories needed to understand the forming processes to the mechanisms and methods of sintering (firing)
Explore la transformation de la poudre céramique à travers des opérations de fragmentation, des mécanismes de rupture des particules et des forces interparticulaires comme les forces de van der Waals.
Présente un exemple de calcul d'une force d'attraction avec des paramètres et des conditions variables.
The scientific progress is significantly transforming contemporary society with the introduction and widespread application of technologies like artificial intelligence and quantum computing. Despite their profound impact, these technologies necessitate en ...
Mechanochemistry harnesses mechanical force to facilitate chemical reactions. Traditionally, the field of polymer mechanochemistry has used methods to activate chemical bonds, which use forces that are larger than those that are required to break a covalen ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...