Concept

Casson invariant

In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson. Kevin Walker (1992) found an extension to rational homology 3-spheres, called the Casson–Walker invariant, and Christine Lescop (1995) extended the invariant to all closed oriented 3-manifolds. A Casson invariant is a surjective map λ from oriented integral homology 3-spheres to Z satisfying the following properties: λ(S3) = 0. Let Σ be an integral homology 3-sphere. Then for any knot K and for any integer n, the difference is independent of n. Here denotes Dehn surgery on Σ by K. For any boundary link K ∪ L in Σ the following expression is zero: The Casson invariant is unique (with respect to the above properties) up to an overall multiplicative constant. If K is the trefoil then The Casson invariant is 1 (or −1) for the Poincaré homology sphere. The Casson invariant changes sign if the orientation of M is reversed. The Rokhlin invariant of M is equal to the Casson invariant mod 2. The Casson invariant is additive with respect to connected summing of homology 3-spheres. The Casson invariant is a sort of Euler characteristic for Floer homology. For any integer n where is the coefficient of in the Alexander–Conway polynomial , and is congruent (mod 2) to the Arf invariant of K. The Casson invariant is the degree 1 part of the Le–Murakami–Ohtsuki invariant. The Casson invariant for the Seifert manifold is given by the formula: where Informally speaking, the Casson invariant counts half the number of conjugacy classes of representations of the fundamental group of a homology 3-sphere M into the group SU(2). This can be made precise as follows. The representation space of a compact oriented 3-manifold M is defined as where denotes the space of irreducible SU(2) representations of . For a Heegaard splitting of , the Casson invariant equals times the algebraic intersection of with .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.