The SnakeBot, also known as a snake robot, is a biomorphic hyper-redundant robot that resembles a biological snake. Snake robots come in many shapes and sizes, from as long as four stories (earthquake SnakeBot developed by SINTEF) to a medical SnakeBot developed at Carnegie Mellon University that is thin enough to maneuver around organs inside a human chest cavity. Though SnakeBots can very greatly in size and design, there are two qualities that all SnakeBot share. The small cross-section-to-length ratios allow them to move into and maneuver through tight spaces and their ability to change the shape of their bodies allows them to perform a wide range of behaviors, such as climbing stairs or tree trunks. Additionally, many snake robots are constructed by chaining together several independent links. This redundancy can make them resistant to failure because they can continue to operate even if parts of their body are destroyed. Properties such as high terrainability, redundancy, and the possibility of complete sealing of the body of the robot, make snake robots very interesting for practical applications and hence as a research topic. A SnakeBot is different from a snake-arm robot in that the SnakeBot robot types are usually more self-contained, where a snake-arm robot usually has remote mechanicals from the arm itself, possibly connected to a larger system. Snakebots are used in situations where their characteristics give them an advantage over their environment. These environments tend to be long and thin like pipes or highly cluttered like rubble. Thus, Snakebots are currently being developed to assist search and rescue teams. When a task requires several different obstacles to be overcome, the locomotive flexibility of SnakeBots potentially offers an advantage. Snakebots can also be used by animal control officers to subdue rabid or invasive creatures. Raccoons, barn cats, and large rodents typically respond to the Snakebot's presence with attacks upon which the SnakeBot may respond by emitting an electrical shock to paralyze the aggressor.