Transformations de GaliléeEn physique, une transformation de Galilée correspond aux formules de transformations des coordonnées spatiales et temporelle entre deux référentiels galiléens donnés. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel donné supposé galiléen, est lui-même galiléen. Une telle transformation laisse invariantes les équations de la mécanique newtonienne, mais pas celles de la dynamique relativiste ou les équations de Maxwell.
Gravitational time dilationGravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational potential increases (the clock getting away from the source of gravitation). Albert Einstein originally predicted this effect in his theory of relativity and it has since been confirmed by tests of general relativity.
Vide (physique)En physique, le vide est l'absence de toute matière. Le vide absolu est donc un milieu statistiquement sans particules élémentaires. Un espace dans lequel les molécules sont fortement raréfiées peut donc être retenu comme une première définition du vide approximatif. Ainsi, il suffit d’utiliser une pompe à vide pour extraire l’air d'une enceinte étanche pour y . La qualité du vide est alors définie par la pression d'air résiduelle, généralement exprimée en pascal, en millibar ou en torr.
Force de CoriolisLa force de Coriolis est une force inertielle agissant perpendiculairement à la direction du mouvement d'un corps en déplacement dans un milieu (un référentiel) lui-même en rotation uniforme, tel que vu par un observateur partageant le même référentiel. Cette « force » est nommée ainsi en l'honneur de l'ingénieur français Gaspard-Gustave Coriolis. Elle n'est pas une « force » au sens strict, soit l'action d'un corps sur un autre, mais plutôt une force fictive résultant du mouvement non linéaire du référentiel lui-même.
Tempsthumb|Chronos, dieu du temps de la mythologie grecque, par Ignaz Günther, Bayerisches Nationalmuseum à Munich. vignette|Montre à gousset ancienne Le temps est une notion qui rend compte du changement dans le monde. Le questionnement s'est porté sur sa « nature intime » : propriété fondamentale de l'Univers, ou produit de l'observation intellectuelle et de la perception humaine. La somme des réponses ne suffit pas à dégager un concept satisfaisant du temps.
Système de coordonnées curvilignesUn système de coordonnées curvilignes est une façon d'attribuer à chaque point du plan ou de l'espace un ensemble de nombres. Soit un point de l'espace dont les coordonnées sont notées . Un système de coordonnées quelconques est obtenu en se donnant trois fonctions arbitraires des paramètres , telles que ; ces fonctions sont choisies le plus souvent continues, et même différentiables. Les points correspondant à deux des trois coordonnées constantes décrivent une ligne de coordonnées.
Lois du mouvement de NewtonLes sont un ensemble de principes à la base de la grande théorie de Newton sur le mouvement des corps, appelée mécanique newtonienne ou mécanique classique. À ces lois générales du mouvement, Newton a ajouté la loi de la gravitation universelle permettant d'expliquer aussi bien la chute des corps que le mouvement de la Lune autour de la Terre. Elles sont énoncées pour la première fois dans son ouvrage Philosophiae naturalis principia mathematica en .
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.