Operational intelligence (OI) is a category of real-time dynamic, business analytics that delivers visibility and insight into data, streaming events and business operations. OI solutions run queries against streaming data feeds and event data to deliver analytic results as operational instructions. OI provides organizations the ability to make decisions and immediately act on these analytic insights, through manual or automated actions.
The purpose of OI is to monitor business activities and identify and detect situations relating to inefficiencies, opportunities, and threats and provide operational solutions. Some definitions define operational intelligence as an event-centric approach to delivering information that empowers people to make better decisions, based on complete and actual information.
In addition, these metrics act as the starting point for further analysis (drilling down into details, performing root cause analysis — tying anomalies to specific transactions and the business activity).
Sophisticated OI systems also provide the ability to associate metadata with metrics, process steps, channels, etc. With this, it becomes easy to get related information, e.g., "retrieve the contact information of the person that manages the application that executed the step in the business transaction that took 60% more time than the norm," or "view the acceptance/rejection trend for the customer who was denied approval in this transaction," or "Launch the application that this process steps interacted with."
Different operational intelligence solutions may use many different technologies and be implemented in different ways. This section lists the common features of an operational intelligence solution:
Real-time monitoring
Real-time situation detection
Real-time dashboards for different user roles
Correlation of events
Industry-specific dashboards
Multidimensional analysis
Root cause analysis
Time Series and trend analysis
Big data Analytics: Operational Intelligence is well suited to address the inherent challenges of Big Data.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le traitement des événements complexes, ou CEP (pour complex event processing), est principalement un concept de traitement des événements dans le but d'identifier les événements significatifs dans un nuage d'événements. Le CEP emploie des techniques telles que la détection des schémas complexes de multiples événements: corrélation, abstraction, et hiérarchies entre événements et les relations entre événements tels que les liens de causalité, l'adhésion, la chronologie et les processus pilotés par les événements.
Le concept de business activity monitoring (BAM) représente le domaine des logiciels d’aide à la supervision des activités de l’entreprise. On parle aussi de supervision des activités métiers. Le concept de business activity monitoring (BAM) comprend l'acquisition, l’agrégation, l'analyse et la présentation en temps réel de données (typiquement des séquences de valeurs temporelles et leur évolution) associées à des processus d'entreprise.
L’informatique décisionnelle (en anglais business intelligence (BI) ou decision support system (DSS)) est l'informatique à l'usage des décideurs et des dirigeants d'entreprises. Elle désigne les moyens, les outils et les méthodes qui permettent de collecter, consolider, modéliser et restituer les données, matérielles ou immatérielles, d'une entreprise en vue d'offrir une aide à la décision et de permettre à un décideur d’avoir une vue d’ensemble de l’activité traitée.
The terminology of neurological disorders encompasses a range of serious illnesses (e.g., epilepsy, Alzheimer's disease) leading to morbidity, disability, and stigma. Epilepsy alone affects over 50 million people worldwide, and these figures are rising as ...
Carrier-envelope phase (CEP) detection of ultrashort optical pulses and low-energy waveform field sampling have recently been demonstrated using direct time-domain methods that exploit optical-field photoemission from plasmonic nanoantennas. These devices ...
The current state of the art in RDF Stream Processing (RSP) proposes several models and implementations to combine Semantic Web technologies with Data Stream Management System (DSMS) operators like windows. Meanwhile, only a few solutions combine Semantic ...