Euler forceIn classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration or transverse acceleration is that part of the absolute acceleration that is caused by the variation in the angular velocity of the reference frame. The Euler force will be felt by a person riding a merry-go-round.
De motu corporum in gyrumDe motu corporum in gyrum (from Latin: "On the motion of bodies in an orbit"; abbreviated De Motu) is the presumed title of a manuscript by Isaac Newton sent to Edmond Halley in November 1684. The manuscript was prompted by a visit from Halley earlier that year when he had questioned Newton about problems then occupying the minds of Halley and his scientific circle in London, including Sir Christopher Wren and Robert Hooke.
Banked turnA banked turn (or banking turn) is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal. If the bank angle is zero, the surface is flat and the normal force is vertically upward.
Mécanique (technique)La mécanique en tant que technique ou activité industrielle, est l'ensemble des activités, méthodes et techniques liées à la conception de structures (charpentes, coques, bâtis), machines ou de mécanismes. Ces activités regroupent l'étude, la conception, la fabrication, la maintenance et la déconstruction de toute structure ou dispositif (moteurs, véhicules) produisant ou transmettant un mouvement, une force, ou une déformation.
Rotating spheresIsaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies (which is the same for all observers) and the rate of rotation of the spheres (which is different for observers with differing rates of rotation). Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation.