Data mappingLe data mapping est un procédé permettant de définir au niveau d'un langage de programmation la correspondance entre deux modèles de données. L'Office québécois de la langue française propose comme équivalent en français mise en correspondance de données. L'accès aux données se fait habituellement à travers des requêtes SQL fortement typées selon la structure des données. Le mapping permet aux utilisateurs d'accéder aux données à travers un ensemble de fonctions sans se soucier de la structure des bases de données.
Architecture de donnéesUne architecture de données en Informatique est composée de modèles, de règles ou de standards qui désignent quelles données sont collectées et comment elles sont stockées, triées, intégrées et utilisées dans des systèmes de données. En d’autres termes, elle décrit la structure de données utilisée par une organisation et / ou des applications et inclut les descriptions des données stockées. Elle fournit les critères pour les opérations de traitement des différents types de données et contrôle donc celles qui circulent dans le système.
Data transformation (computing)In computing, data transformation is the process of converting data from one format or structure into another format or structure. It is a fundamental aspect of most data integration and data management tasks such as data wrangling, data warehousing, data integration and application integration. Data transformation can be simple or complex based on the required changes to the data between the source (initial) data and the target (final) data. Data transformation is typically performed via a mixture of manual and automated steps.
Fair dataDans le contexte de l'accessibilité de l'Internet, du big data (mégadonnées) des données de la recherche et des sciences ouvertes et plus largement du partage et l'ouverture des données, la notion de FAIR data ou données FAIR recouvre les manières de construire, stocker, présenter ou publier des données de manière à permettre que les données soient (findable, accessible, interoperable, reusable), d'où l'acronyme « FAIR ». Le mot fair (« équitable », « juste ») fait aussi référence au fair use, commerce équitable (fair trade), fair play, etc.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Architecture d'entrepriseL'architecture d'entreprise est une école visant à représenter de manière systémique l'entreprise, sous forme de composants. Ainsi le découpage en composants permet à l'entreprise de faciliter les assemblages. Les méthodes d'architecture visent à mettre en place des principes ainsi qu'un cadre d'architecture dit "de référence". C'est une démarche visant à aligner avec la stratégie d'entreprise l'ensemble des couches de l'entreprise,(Métier, fonctionnelle, applicative, technique, ...).
Qualité des donnéesLa qualité des données, en informatique se réfère à la conformité des données aux usages prévus, dans les modes opératoires, les processus, les prises de décision, et la planification (J.M. Juran). De même, les données sont jugées de grande qualité si elles représentent correctement la réalité à laquelle elles se réfèrent. Ces deux points de vue peuvent souvent entrer en contradiction, y compris lorsqu'un même ensemble de données est utilisé avec un objectif commun.