Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la mécanique des fractures, la croissance des fissures et la théorie des maillons les plus faibles, en mettant l'accent sur la distribution statistique des tailles de fissures et l'importance de la plus grande fissure dans la défaillance matérielle.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Explore les générateurs de nombres aléatoires, y compris les algorithmes Pseudo-RNG, les propriétés, les méthodes d'évaluation et les tests d'indépendance.
Explore la distribution aléatoire à l'aide de Drand, couvrant les outils cryptographiques, l'échange de clés, la cryptographie des courbes elliptiques et les applications pratiques dans les systèmes blockchain.