Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
vignette|redresse=1.5|Vue d'ensemble d'une architecture entrepôt de données. Le terme entrepôt de données ou EDD (ou base de données décisionnelle ; en anglais, data warehouse ou DWH) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle à l'aide à la décision en entreprise. Un entrepôt de données est une base de données regroupant une partie ou l'ensemble des données fonctionnelles d'une entreprise. Il entre dans le cadre de l'informatique décisionnelle ; son but est de fournir un ensemble de données servant de référence unique, utilisée pour la prise de décisions dans l'entreprise par le biais de statistiques et de rapports réalisés via des outils de reporting. D'un point de vue technique, il sert surtout à 'délester' les bases de données opérationnelles des requêtes pouvant nuire à leurs performances. D'un point de vue architectural, il existe deux manières de l'appréhender : l'architecture « de haut en bas » : selon Bill Inmon, l'entrepôt de données est une base de données au niveau détail, consistant en un référentiel global et centralisé de l'entreprise. En cela, il se distingue du Datamart, qui regroupe, agrège et cible fonctionnellement les données ; l'architecture « de bas en haut » : selon Ralph Kimball, l'entrepôt de données est constitué peu à peu par les Datamarts de l'entreprise, regroupant ainsi différents niveaux d'agrégation et d'historisation de données au sein d'une même base. La définition la plus communément admise est un mélange de ces deux points de vue. Le terme « data warehouse » englobe le contenant et le contenu : il désigne d'une part la base détaillée qui est la source de données à l'origine des Datamarts, et d'autre part l'ensemble constitué par cette base détaillée et ses Datamarts. De la même manière, les méthodes de conception actuelles prennent en compte ces deux approches, privilégiant certains aspects selon les risques et les opportunités inhérents à chaque entreprise.
Anna Fontcuberta i Morral, Alok Rudra, Santhanu Panikar Ramanandan, Joel René Sapera, Vladimir Dubrovskii, Sara Marti Sanchez
,
Andreas Mortensen, David Hernandez Escobar, Léa Deillon, Alejandra Inés Slagter, Eva Luisa Vogt, Jonathan Aristya Setyadji