Cours associés (10)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
ENV-513: Multivariate statistics in R
Data required for ecosystem assessment is typically multidimensional. Multivariate statistical tools allow us to summarize and model multiple ecological parameters. This course provides a conceptual i
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
EE-451: Image analysis and pattern recognition
This course gives an introduction to the main methods of image analysis and pattern recognition.
COM-308: Internet analytics
Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
CIVIL-426: Machine learning for predictive maintenance applications
The course aims to develop machine learning algorithms capable of efficiently detecting faults in complex industrial and infrastructure assets, isolating their root causes, and ultimately predicting t
MICRO-457: Materials processing with intelligent systems
Repeatability in laser material processing is challenging due to high-speed dynamics. To address this issue, the course provides an overview of laser theory, laser-material interaction, various types
ENG-209: Data science for engineers with Python
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
MATH-602: Inference on graphs
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.