Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la vérification du modèle et les résidus dans lanalyse de régression, en soulignant limportance des diagnostics pour assurer la validité du modèle.
Explore les outils de contrôle de la qualité dans l'analyse des données génomiques, en mettant l'accent sur les procédures robustes en présence d'objets aberrants et d'images.
Explore la théorie de la décomposition de la valeur singulière, les solutions de systèmes linéaires, les moindres carrés et les concepts d'ajustement des données.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore la minimisation non lisse, la détection compressive, la récupération de signal clairsemée et les représentations simples à l'aide d'ensembles atomiques et d'atomes.
Explore les techniques d'apprentissage automatique pour la régression non linéaire et la prévision des tendances dans des ensembles de données complexes.