Résumé
redresse=1.75|vignette| Diagramme représentant la distribution des électrons dans les bandes de différents types de matériaux à l'équilibre. De gauche à droite : métal ; semimétal ; semiconducteur (dopé p, intrinsèque, dopé n) ; isolant. L'énergie est représentée par l'axe vertical, tandis que l'épaisseur horizontale des bandes représente la densité d'états.La densité électronique par niveau d'énergie suit la statistique de Fermi-Dirac et est représentée par un dégradé de noir. Le niveau de Fermi E des métaux et des semimétaux se trouve dans au moins l'une des bandes, tandis qu'il se trouve loin de toute bande dans les isolants, et suffisamment proche d'une bande dans les semiconducteurs pour peupler la bande de conduction ou la bande de valence d'électrons ou de trous. Un semimétal est un matériau dont les états d'énergie inférieurs de la bande de conduction recouvrent très faiblement les états d'énergie supérieurs de la bande de valence. Il s'agit de l'un des types de substances définis par théorie des bandes, les autres étant les métaux, les semiconducteurs et les isolants. Dans les semiconducteurs et les isolants, les bandes de valence et conduction sont séparées par une bande interdite, dont la largeur est appelée gap. Celle-ci est plus large pour les isolants que pour les semiconducteurs, la limite entre les deux se situant empiriquement aux environs de . Les métaux sont caractérisés par un continuum de densités d'états électroniques entre la bande de valence et la bande de conduction, ce qui fait que cette dernière est constamment peuplée d'électrons qui y sont injectés thermiquement par-delà le niveau de Fermi : la conductivité électrique d'un métal n'est jamais nulle. Lorsque le passage entre la bande de valence et la bande de conduction est étroit, avec une densité d'états faible mais non nulle autour du niveau de Fermi, on dit qu'on est en présence d'un semimétal. L'arsenic, l'antimoine, le bismuth, l'étain α (gris) et le graphite sont des corps simples semimétalliques, mais il existe également des composés semimétalliques, comme le tellurure de mercure HgTe.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (4)
Personnes associées (1)
Concepts associés (23)
Modèle de l'électron libre
En physique du solide, le modèle de l'électron libre est un modèle qui sert à étudier le comportement des électrons de valence dans la structure cristalline d'un solide métallique. Ce modèle, principalement développé par Arnold Sommerfeld, associe le modèle de Drude aux statistiques de Fermi-Dirac (mécanique quantique). Électron Particule dans réseau à une dimension 2.4 Modèle de sommerfeld ou de l'électron libre dans un puits de potentiel, sur le site garmanage.com Catégorie:Physique du solide Catégorie:É
Graphène
Le graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
Semimétal
redresse=1.75|vignette| Diagramme représentant la distribution des électrons dans les bandes de différents types de matériaux à l'équilibre. De gauche à droite : métal ; semimétal ; semiconducteur (dopé p, intrinsèque, dopé n) ; isolant. L'énergie est représentée par l'axe vertical, tandis que l'épaisseur horizontale des bandes représente la densité d'états.La densité électronique par niveau d'énergie suit la statistique de Fermi-Dirac et est représentée par un dégradé de noir.
Afficher plus
Cours associés (8)
PHYS-433: Semiconductor physics and light-matter interaction
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
EE-567: Semiconductor devices II
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts. Remark: at least 5 students should be enrolled for the course to be g
PHYS-310: Solid state physics II
This course gives an introduction into Solid State Physics (crystal structure of materials, electronic and magnetic properties, thermal and electronic transport). The course material is at the level o
Afficher plus
Séances de cours associées (37)
Phénomènes de transport: relations onsager et équation thermique
Couvre les relations Onsager, l'équation de diffusion, la loi de Fourier, le transport électrique, la loi d'Ohm et la thermophorèse.
Gaz d'électrons et réseau cristallin
Explore le comportement des électrons dans un gaz d'électron et l'arrangement périodique des atomes dans les solides cristallins, ainsi que la densité des états dans diverses dimensions et bandes d'énergie.
Mouvement électronique semi-classique dans les solides
Explore le mouvement électronique semi-classique dans les solides, y compris le comportement de la bande, la masse efficace, les champs magnétiques et la conductance.
Afficher plus