Masse effectiveredresse=1.5|vignette|Structure de bande générée pour Si, Ge, GaAs et InAs massifs par la méthode . La masse effective est une notion utilisée en physique du solide pour l'étude du transport des électrons. Plutôt que de décrire des électrons de masse fixée évoluant dans un potentiel donné, on les décrit comme des électrons libres dont la masse effective varie. Cette masse effective peut-être positive ou négative, supérieure ou inférieure à la masse réelle de l'électron.
Diode Zenervignette|Symbole de la diode Zener vignette|Diode Zener de puissance Une diode Zener est un assemblage de deux semi-conducteurs dont les propriétés électriques ont été découvertes par le physicien américain Clarence Zener. Contrairement à une diode conventionnelle qui ne laisse passer le courant électrique que dans un seul sens, le sens direct, les diodes Zener sont conçues de façon à laisser également passer le courant inverse, mais ceci uniquement si la tension à ses bornes est plus élevée que le seuil de l'effet d'avalanche.
HétérojonctionUne hétérojonction est une jonction entre deux semi-conducteurs dont les bandes interdites (gap, en langue anglaise) sont différentes. Les hétérojonctions ont une importance considérable en physique des semi-conducteurs et en optique. Une hétérojonction est une jonction formée par deux semi-conducteurs différents ou par un métal et un semi-conducteur. Quand les deux semi-conducteurs ont le même type de conductivité, on parle d'hétérojonction isotype. Lorsque le type de conductivité diffère, on parle d'hétérojonction anisotype.
Transistor à effet de champ à grille métal-oxydethumb|right|235px|Photographie représentant deux MOSFET et une allumette Un transistor à effet de champ à grille isolée plus couramment nommé MOSFET (acronyme anglais de metal-oxide-semiconductor field-effect transistor — qui se traduit par transistor à effet de champ à structure métal-oxyde-semiconducteur), est un type de transistor à effet de champ. Comme tous les transistors, le MOSFET module le courant qui le traverse à l'aide d'un signal appliqué sur son électrode nommée grille.
Groupe 13 du tableau périodiqueLe groupe 13 du tableau périodique, autrefois appelé groupe B dans l'ancien système IUPAC utilisé en Europe et groupe A dans le système CAS nord-américain, contient les éléments chimiques de la , ou groupe, du tableau périodique des éléments : {| class="wikitable" style="text-align:left" |- ! Période ! colspan="2" | Élément chimique ! Z ! Famille d'éléments ! Configuration électronique |- | style="text-align:center" | 2 ! B | Bore | style="text-align:right" | 5 | Métalloïde | |- | style="text-align:center" |
Travail de sortieEn physique, en mécanique quantique, le travail de sortie ou travail d'extraction est l'énergie minimum, mesurée en électron-volts, nécessaire pour arracher un électron depuis le niveau de Fermi d'un métal jusqu'à un point situé à l'infini en dehors du métal (niveau du vide). Le travail de sortie est approximativement la moitié de l'énergie d'ionisation d'un atome libre du même métal. L'effet photoélectrique consiste en une libération d'un électron lorsqu'un photon doté d'une énergie supérieure au travail de sortie arrive sur le métal.
Diode Schottkyvignette|250px|Une diode Schottky. 250px|thumb|Symbole de la diode Schottky. 250px|thumb|Diodes Schottky. 250px|thumb|Coupe d'une diode Schottky. Une diode Schottky (nommée d'après le physicien allemand Walter H. Schottky) est une diode qui a un seuil de tension directe très bas et un temps de commutation très court. Ceci permet la détection des signaux HF faibles et hyperfréquences, la rendant utile par exemple en radioastronomie.
ÉpitaxieL'épitaxie est une technique de croissance orientée, l'un par rapport à l'autre, de deux cristaux possédant un certain nombre d'éléments de symétrie communs dans leurs réseaux cristallins. On distingue l'homo-épitaxie, qui consiste à faire croître un cristal sur un cristal de nature chimique identique, et l'hétéro-épitaxie, dans laquelle les deux cristaux sont de natures chimiques différentes. Étymologiquement, « épi » en grec signifie « sur » et « taxis », « arrangement ».
Diode à effet tunnelUne diode à effet tunnel, ou diode Esaky est un dipôle électrique semi-conducteur, qui remplit la fonction d'une diode dans les circuits où un temps de commutation très court devient indispensable (jusqu’à ). La différence entre une diode classique et une diode tunnel est la suivante : Diode classique réalisée avec des semi-conducteurs, la conduction se produit si la jonction PN est polarisée positivement, et s'arrête dès que la polarisation devient négative.
Modèle de DrudeLe modèle de Drude (du nom du physicien Paul Drude), parfois appelé modèle de l'électron amorti, est une adaptation effectuée en 1900 de la théorie cinétique des gaz aux électrons des métaux (découverts 3 ans plus tôt, en 1897 par J.J. Thomson). En considérant les électrons d'un métal comme des particules classiques ponctuelles confinées à l'intérieur du volume défini par l'ensemble des atomes de l'échantillon, on obtient un gaz qui est entraîné dans un mouvement d'ensemble (lequel se superpose aux mouvements individuels des particules) par des champs électriques et magnétiques et freiné dans ce mouvement par des collisions.