Concept

Categorial grammar

Résumé
Categorial grammar is a family of formalisms in natural language syntax that share the central assumption that syntactic constituents combine as functions and arguments. Categorial grammar posits a close relationship between the syntax and semantic composition, since it typically treats syntactic categories as corresponding to semantic types. Categorial grammars were developed in the 1930s by Kazimierz Ajdukiewicz and in the 1950s by Yehoshua Bar-Hillel and Joachim Lambek. It saw a surge of interest in the 1970s following the work of Richard Montague, whose Montague grammar assumed a similar view of syntax. It continues to be a major paradigm, particularly within formal semantics. A categorial grammar consists of two parts: a lexicon, which assigns a set of types (also called categories) to each basic symbol, and some type inference rules, which determine how the type of a string of symbols follows from the types of the constituent symbols. It has the advantage that the type inference rules can be fixed once and for all, so that the specification of a particular language grammar is entirely determined by the lexicon. A categorial grammar shares some features with the simply typed lambda calculus. Whereas the lambda calculus has only one function type , a categorial grammar typically has two function types, one type that is applied on the left, and one on the right. For example, a simple categorial grammar might have two function types and . The first, , is the type of a phrase that results in a phrase of type when followed (on the right) by a phrase of type . The second, , is the type of a phrase that results in a phrase of type when preceded (on the left) by a phrase of type The notation is based upon algebra. A fraction when multiplied by (i.e. concatenated with) its denominator yields its numerator. As concatenation is not commutative, it makes a difference whether the denominator occurs to the left or right. The concatenation must be on the same side as the denominator for it to cancel out.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.