Concept

Stone's theorem on one-parameter unitary groups

Résumé
In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space \mathcal{H} and one-parameter families :(U_{t})_{t \in \R} of unitary operators that are strongly continuous, i.e., :\forall t_0 \in \R, \psi \in \mathcal{H}: \qquad \lim_{t \to t_0} U_t(\psi) = U_{t_0}(\psi), and are homomorphisms, i.e., :\forall s,t \in \R : \qquad U_{t + s} = U_t U_s. Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups. The theorem was proved by , and showed that the requirement that (U_t)_{t \in \R} be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable. This is an impressive result, as it allows one to define the derivative of the mapping t \mapsto U_t,
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement