A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust met ...
In this thesis we investigate a number of problems related to 2-level polytopes, in particular from the point of view of the combinatorial structure and the extension complexity. 2-level polytopes were introduced as a generalization of stable set polytopes ...
We derive a new upper bound on the diameter of a polyhedron , where . The bound is polynomial in and the largest absolute value of a sub-determinant of , denoted by . More precisely, we show that the diameter of is bounded by . If is bounded, then we show ...
The polynomial Hirsch conjecture states that the vertex-edge diameter of a d-dimensional polyhedron with n facets is bounded by a polynomial in d and n. For the special case where the polyhedron is defined as the set of points satisfying a system Ax ≤ b of ...
It is important to consider the microstructure of a material when studying the macroscopic mechanical properties. Although special equipments have been used for micromechanics study through experimental tests, it is limited by instruments and reproducibili ...
We present three different prepn. methods for CdSe colloidal nanoparticles that, when carried out into the Ostwald ripening regime, lead to the development of complex spectral patterns resulting from the overlap of several distinct components corresponding ...
Convex polyhedra are important objects in various areas of mathematics and other disciplines. A fundamental result, known as Minkowski-Weyl theorem, states that every polyhedron admits two types of representations, either as the solution set to a finite sy ...