Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Chat d'ArnoldEn mathématiques, l'application chat d'Arnold est une certaine bijection du tore vers lui-même. Cette fonction sert à illustrer des comportements chaotiques en théorie des systèmes dynamiques. Elle porte ce nom inhabituel parce que Vladimir Arnold l'a décrite en 1967 en s'aidant du dessin d'un chat. thumb|L'effet de l'opération modulo sur le parallélogramme. On peut repérer les points sur le tore à l'aide de deux coordonnées x et y chacune dans l'intervalle [0, 1], cela revient à « déplier » ce tore pour obtenir un carré.
Wandering setIn dynamical systems and ergodic theory, the concept of a wandering set formalizes a certain idea of movement and mixing. When a dynamical system has a wandering set of non-zero measure, then the system is a dissipative system. This is the opposite of a conservative system, to which the Poincaré recurrence theorem applies. Intuitively, the connection between wandering sets and dissipation is easily understood: if a portion of the phase space "wanders away" during normal time-evolution of the system, and is never visited again, then the system is dissipative.
Conjugaison topologiqueEn mathématiques, et plus particulièrement dans la théorie des systèmes dynamiques, deux fonctions et sont dites topologiquement conjuguées (ou simplement conjuguées lorsqu'il n'y a pas de risque de confusion avec, par exemple, la conjugaison complexe) s'il existe un homéomorphisme tel que (où note la composition des fonctions). Deux fonctions conjuguées ont les mêmes propriétés dynamiques (par exemple le même nombre de points fixes), d'où l'importance de cette notion dans l'étude en particulier des suites définies par itération.
Anosov diffeomorphismIn mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems. Anosov diffeomorphisms were introduced by Dmitri Victorovich Anosov, who proved that their behaviour was in an appropriate sense generic (when they exist at all).
Fonction de LiapounovUne fonction de Liapounov est une fonction qui permet d'estimer la stabilité d'un point d'équilibre (ou, plus généralement, d'un mouvement, c'est-à-dire d'une solution maximale) d'une équation différentielle. Soit une fonction et un système dynamique, avec un point d'équilibre de ce système, c'est-à-dire que . Par un changement de variable , on peut se ramener au cas où l'origine est un point d'équilibre (). Une fonction est une fonction candidate de Liapounov si pour un certain voisinage de l'origine.
Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Fer à cheval de SmaleL'application fer à cheval est un des exemples classiques de systèmes dynamiques. Elle fut introduite par Stephen Smale à l'occasion de l'étude de l'oscillateur de Van der Pol. Son comportement est chaotique alors qu'on l'obtient en effectuant une succession d'opérations géométriques très simples : rétrécissement dans une direction, étalement dans une autre, et repliement en forme de fer à cheval. L'application fer à cheval est un difféomorphisme qui laisse stable la figure formée d'un carré avec deux demi-disques accolés.