Concept

Boucle d'oreille hawaïenne

Résumé
droite|vignette|250x250px|La boucle d'oreille hawaïenne. Seuls les dix plus grands cercles sont affichés. En mathématiques, la boucle d'oreille hawaïenne, aussi appelée anneaux hawaïens, est un espace topologique obtenu par réunion d’une suite de cercles dans le plan Euclidien R2, qui sont tangents intérieurement et de rayon décroissant vers 0. Par exemple, on peut utiliser la famille des cercles de centre (1/n, 0) et de rayon 1/n pour tout entier naturel non nul n. Cet espace est homéomorphe au compactifié d'Alexandrov de l'union d'une famille infinie dénombrable d'intervalles ouverts. La boucle d'oreille hawaïenne peut être munie d'une métrique complète et elle est compacte. Elle est connexe par arcs mais pas semi-localement simplement connexe. La boucle d'oreille hawaïenne est très similaire au bouquet d'une infinité dénombrable de cercles ; en d'autres termes, la avec une infinité de pétales, mais ces deux espaces ne sont pas homéomorphes. La différence entre leurs topologies respectives est décelable dans le fait que, dans la boucle d'oreille hawaïenne, chaque voisinage ouvert du point d'intersection des cercles contient tous les cercles à un nombre fini près. On le voit aussi dans le fait que le bouquet n'est pas compact : le complément du point distingué est une union d'intervalles ouverts ; ajouter un petit voisinage ouvert du point distingué fournit un recouvrement ouvert n'admettant pas de sous-recouvrement fini. La boucle d'oreille hawaïenne n'est pas simplement connexe, étant donné que le lacet paramétrant un cercle n'est pas homotope à une simple boucle. Ainsi, elle possède un groupe fondamental G non trivial. La boucle d'oreille hawaïenne H admet le groupe libre à une infinité dénombrable de générateurs comme sous-groupe propre de son groupe fondamental. G contient des éléments supplémentaires, qui découlent de lacets dont l' n'est pas contenue dans un nombre fini de cercles de la boucle d'oreille hawaïenne ; en fait, certains d'entre eux sont surjectifs : par exemple, le chemin (défini sur [0, 1]) qui, pour tout entier naturel non nul n, « fait le tour » du nième cercle sur l'intervalle .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.