This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
This paper proposes a data-driven control design method for nonlinear systems that builds upon the Koopman operator framework. In particular, the Koopman operator is used to lift the nonlinear dynamics to a higher-dimensional space where the so-called obse ...
This thesis is devoted to the construction, analysis, and implementation of two types of hierarchical Markov Chain Monte Carlo (MCMC) methods for the solution of large-scale Bayesian Inverse Problems (BIP).The first hierarchical method we present is base ...
In this paper, we propose a new approach for sampling from probability measures in, possibly, high-dimensional spaces. By perturbing the standard overdamped Langevin dynamics by a suitable Stratonovich perturbation that preserves the invariant measure of t ...
Electronic-structure simulations have been impacting the study of materials properties thanks to the simplicity of density-functional theory, a method that gives access to the ground state of the system. Although very important, ground-state properties rep ...
Enabling analysis of non-linear systems in linear form, the Koopman operator has been shown to be a powerful tool for system identification and controller design. However, current data-driven methods cannot provide quantification of model uncertainty given ...
Matrix equations of the kind A(1)X(2)+A(0)X+A(-1)=X, where both the matrix coefficients and the unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where coefficients are quasi-Toeplitz matrices, are encounter ...
We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of th ...
We relate a Chaplygin type system to a Cartan decomposition of a real semi-simple Lie group. The resulting system is described in terms of the structure theory associated to the Cartan decomposition. It is shown to possess a preserved measure and when inte ...