En mathématiques, et plus précisément en analyse et en , le théorème de Liouville, formulé par Joseph Liouville dans une série de travaux concernant les fonctions élémentaires entre 1833 et 1841, et généralisé sous sa forme actuelle par Maxwell Rosenlicht en 1968, donne des conditions pour qu'une primitive puisse être exprimée comme combinaison de fonctions élémentaires, et montre en particulier que de nombreuses primitives de fonctions usuelles, telle que la fonction d'erreur, qui est une primitive de e−x2, ne peuvent s'exprimer ainsi. Un corps différentiel est un corps commutatif K, muni d'une dérivation, c'est-à-dire d'une application de K dans K, additive (telle que ), et vérifiant la « règle du produit » : Si K est un corps différentiel, le noyau de , à savoir est appelé le corps des constantes, et noté Con(K) ; c'est un sous-corps de K. Étant donnés deux corps différentiels F et G, on dit que G est une extension logarithmique de F si G est une extension transcendante simple de F, c'est-à-dire que G = F(t) pour un élément transcendant t, et s'il existe un s de F tel que . Cette condition a la forme d'une dérivée logarithmique ; on peut donc interpréter t comme une sorte de logarithme de l'élément s de F. De façon analogue, une extension exponentielle de F est une extension transcendante simple de F telle qu'il existe un s de F vérifiant ; là encore, t peut être interprété comme une sorte d'exponentielle de s. Enfin, on dit que G est une extension différentielle élémentaire de F s'il existe une chaîne finie de sous-corps allant de F à G, telle que chaque extension de la chaîne soit algébrique, logarithmique ou exponentielle. Autrement dit, les seules fonctions ayant des « primitives élémentaires » (c'est-à-dire des primitives appartenant à des extensions élémentaires de F) sont celles de la forme prescrite par le théorème. Le corps K = C(x) des fractions rationnelles à une variable, muni de la dérivée usuelle, est un corps différentiel ; son corps des constantes s'identifie à C.