Concept

Ideal sheaf

In algebraic geometry and other areas of mathematics, an ideal sheaf (or sheaf of ideals) is the global analogue of an ideal in a ring. The ideal sheaves on a geometric object are closely connected to its subspaces. Let X be a topological space and A a sheaf of rings on X. (In other words, (X, A) is a ringed space.) An ideal sheaf J in A is a subobject of A in the of sheaves of A-modules, i.e., a subsheaf of A viewed as a sheaf of abelian groups such that Γ(U, A) · Γ(U, J) ⊆ Γ(U, J) for all open subsets U of X. In other words, J is a sheaf of A-submodules of A. If f: A → B is a homomorphism between two sheaves of rings on the same space X, the kernel of f is an ideal sheaf in A. Conversely, for any ideal sheaf J in a sheaf of rings A, there is a natural structure of a sheaf of rings on the quotient sheaf A/J. Note that the canonical map Γ(U, A)/Γ(U, J) → Γ(U, A/J) for open subsets U is injective, but not surjective in general. (See sheaf cohomology.) In the context of schemes, the importance of ideal sheaves lies mainly in the correspondence between closed subschemes and quasi-coherent ideal sheaves. Consider a scheme X and a quasi-coherent ideal sheaf J in OX. Then, the support Z of OX/J is a closed subspace of X, and (Z, OX/J) is a scheme (both assertions can be checked locally). It is called the closed subscheme of X defined by J. Conversely, let i: Z → X be a closed immersion, i.e., a morphism which is a homeomorphism onto a closed subspace such that the associated map i#: OX → i⋆OZ is surjective on the stalks. Then, the kernel J of i# is a quasi-coherent ideal sheaf, and i induces an isomorphism from Z onto the closed subscheme defined by J. A particular case of this correspondence is the unique reduced subscheme Xred of X having the same underlying space, which is defined by the nilradical of OX (defined stalk-wise, or on open affine charts). For a morphism f: X → Y and a closed subscheme ⊆ Y defined by an ideal sheaf J, the preimage ×Y X is defined by the ideal sheaf f⋆(J)OX = im(f⋆J → OX).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.