Publications associées (149)

Intermediate Address Space: virtual memory optimization of heterogeneous architectures for cache-resident workloads

David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Qunyou Liu

The increasing demand for computing power and the emergence of heterogeneous computing architectures have driven the exploration of innovative techniques to address current limitations in both the compute and memory subsystems. One such solution is the use ...
2024

GEAR-RT: Towards Exa-Scale Moment Based Radiative Transfer For Cosmological Simulations Using Task-Based Parallelism And Dynamic Sub-Cycling with SWIFT

Mladen Ivkovic

Numerical simulations have become an indispensable tool in astrophysics and cosmology. The constant need for higher accuracy, higher resolutions, and models ofever-increasing sophistication and complexity drives the development of modern toolswhich target ...
EPFL2023

TiC-SAT: Tightly-coupled Systolic Accelerator for Transformers

David Atienza Alonso, Giovanni Ansaloni, Alireza Amirshahi, Joshua Alexander Harrison Klein

Transformer models have achieved impressive results in various AI scenarios, ranging from vision to natural language processing. However, their computational complexity and their vast number of parameters hinder their implementations on resource-constraine ...
2023

HetCache: Synergising NVMe Storage and GPU acceleration for Memory-Efficient Analytics

Anastasia Ailamaki, Periklis Chrysogelos, Hamish Mcniece Hill Nicholson, Syed Mohammad Aunn Raza

Accessing input data is a critical operation in data analytics: i) slow data access significantly degrades performance, and ii) storing everything in the fastest medium, i.e., memory, incurs high operational and hardware costs. Further, while GPUs offer in ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.