Le démon de Maxwell est une expérience de pensée imaginée par James Clerk Maxwell en 1867, pour suggérer que la seconde loi de la thermodynamique n'est vraie que de manière statistique. Cette loi établit l'irréversibilité de phénomènes de physique statistique et notamment des transferts thermiques, se traduisant par une augmentation continue de l'entropie. Par exemple, si on laisse ouverte la porte d'un réfrigérateur éteint, la température du réfrigérateur et de la pièce vont s'équilibrer, et cela de manière irréversible sans apport d'énergie. Or, l'expérience du démon de Maxwell propose un processus permettant de revenir à un état de température inégal, sans dépenser d'énergie, et en diminuant l'entropie, ce qui est en principe impossible selon la seconde loi de la thermodynamique.
Ce paradoxe a suscité, et suscite encore, un grand nombre d'études et de débats depuis son énoncé en 1871. Pendant plus d'un demi-siècle, son étude n'a pas tellement progressé, jusqu'à ce que Leó Szilárd propose en 1929 un modèle physique du démon de Maxwell permettant d'étudier précisément et formellement le processus.
Vingt ans plus tard, en 1949, Léon Brillouin propose une solution du paradoxe mettant l'accent sur la nécessité pour le démon d'acquérir de l'information, et mettant en évidence que cette acquisition augmente l'entropie du système et sauve la seconde loi. Après avoir été adoptée par la plus grande partie de la communauté scientifique, cette solution a de plus en plus été remise en question, notamment par l'établissement de modèles de « démons » automatiques, où l'acquisition d'information ne joue pas un rôle déterminant. Le lien fait par Brillouin entre l'entropie et la théorie de l'information a également été critiqué.
Un nouveau tournant a lieu en 1961, quand Rolf Landauer — suivi de Charles Bennett — met en évidence l'importance de la mémorisation de l'information et surtout de la nécessité d'effacer cette mémoire pour réaliser un cycle thermodynamique complet. L'effacement de la mémoire ayant un coût en entropie, cela rétablit le second principe de la thermodynamique.